Монокристалл - Definition. Was ist Монокристалл
Diclib.com
Wörterbuch ChatGPT
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz ChatGPT

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

Was (wer) ist Монокристалл - definition

КРИСТАЛЛ С НЕПРЕРЫВНОЙ КРИСТАЛЛИЧЕСКОЙ РЕШËТКОЙ
Монокристаллов выращивание; Монокристаллы; Нанокристалл; Выращивание монокристаллов
  • додекагидрата сульфата алюминия-калия]]
  • пентагидрата сульфата меди(II)]]

МОНОКРИСТАЛЛ         
(от моно ... и кристалл), отдельный кристалл с непрерывной кристаллической решеткой. От монокристалла отличают поликристаллы.
Монокристалл         

отдельный однородный кристалл, имеющий непрерывную кристаллическую решётку и характеризующийся анизотропией (См. Анизотропия) свойств (см. Кристаллы). Внешняя форма М. обусловлена его атомнокристаллической структурой и условиями кристаллизации (См. Кристаллизация). Часто М. приобретает хорошо выраженную естественную огранку, в неравновесных условиях кристаллизации огранка проявляется слабо. Примерами огранённых природных М. могут служить М. Кварца, каменной соли (См. Каменная соль), исландского шпата (См. Исландский шпат), Алмаза, Топаза. От М. отличают Поликристаллы и поликристаллические агрегаты, состоящие из множества различно ориентированных мелких М.

М. ценны как материал, обладающий особыми физическими свойствами. Например, алмаз и боразон предельно тверды, Флюорит прозрачен для широкого диапазона длин волн, Кварц - пьезоэлектрик (см. Пьезоэлектричество). М. способны менять свои свойства под влиянием внешних воздействий (света, механических напряжений, электрических и магнитного полей, радиации, температуры, давления). Поэтому изделия и элементы, изготовленные из М., применяются в качестве различных преобразователей в радиоэлектронике, квантовой электронике (См. Квантовая электроника), акустике, вычислительной технике и др. Первоначально в технике использовались природные М., однако их запасы ограничены, а качество не всегда достаточно высоко. В то же время многие ценные свойства были найдены только у синтетических кристаллов. Поэтому появилась необходимость искусственного выращивания М. Исходное вещество для выращивания М. может быть в твёрдом (в частности, в порошкообразном), жидком (расплавы и растворы) и газообразном состояниях.

Известны следующие методы выращивания М. из расплава: а) Стокбаргера; б) Чохральского; в) Вернейля; г) зонной плавки (См. Зонная плавка). В методе Стокбаргера тигель с расплавом 1 перемещают вдоль печи 3 в вертикальном направлении со скоростью 1-20 мм/ч (рис. 1). температура в плоскости диафрагмы 6 поддерживается равной температуре кристаллизации вещества. Т. к. тигель имеет коническое дно, то при его медленном опускании расплав в конусе оказывается при температуре ниже температуры кристаллизации, и в нём происходит образование (зарождение) мельчайших кристалликов, из которых в дальнейшем благодаря геометрическому отбору выживает лишь один. Отбор связан главным образом с анизотропией скоростей роста граней М. Этот метод широко используется в промышленном производстве крупных М. флюорита, фтористого лития, сернистого кадмия и др.

В методе Чохральского М. медленно вытягивается из расплава (рис. 2). Скорость вытягивания 1-20 мм/ч. Метод позволяет получать М. заданной кристаллографической ориентации. Метод Чохральского применяется при выращивании М. иттриево-алюминиевого граната, ниобата лития и полупроводниковых М. А. В. Степанов создал на основе этого метода способ для выращивания М. с сечением заданной формы, который используется для производства полупроводниковых М.

Метод Вернейля бестигельный. Вещество в виде порошка (размер частиц 2-100 мкм) из бункера 1 (рис. 3) через кислородно-водородное пламя подаётся на верхний оплавленный торец затравочного монокристалла 2, медленно опускающегося с помощью механизма 5. Метод Вернейля - основной промышленный метод производства тугоплавких М.: Рубина, шпинелей (См. Шпинели), Рутила и др.

В методе зонной плавки создаётся весьма ограниченная по ширине область расплава. Затем благодаря последовательному проплавлению всего слитка получают М. Метод зонного проплавления получил широкое распространение в производстве полупроводниковых М. (В. Дж. Пфанн, 1927), а также тугоплавких металлический М. Молибден, Вольфрам и др.

Методы выращивания из раствора включают 3 способа: низкотемпературный (растворители: вода, спирты, кислоты и др.), высокотемпературный (растворители: расплавленные соли и др.) и гидротермальный. Низкотемпературный кристаллизатор представляет собой сосуд с раствором 1, в котором создаётся пересыщение, необходимое для роста кристаллов 2 путём медленного снижения температуры, реже испарением растворителя (рис. 4). Этот метод используется для получения крупных М. сегнетовой соли, дигидрофосфата калия (KDP), нафталина и др.

Высокотемпературный кристаллизатор (рис. 5) содержит тигель с растворителем и кристаллизуемым соединением, помещенный в печь. Кристаллизуемое соединение выпадает из растворителя при медленном снижении температуры (раствор-расплавная кристаллизация). Метод применяется для получения М. железоиттриевых гранатов, слюды, а также различных полупроводниковых плёнок.

Гидротермальный синтез М. основан на зависимости растворимости вещества в водных растворах кислот и щелочей от давления и температуры. Необходимые для образования М. концентрация вещества в растворе и пересыщение создаются за счёт высокого давления (до 300 Мн/м2 или 3000 кгс/см2) и перепадом температуры между верхней (T1 Монокристалл 250°C) и нижней (Т2 Монокристалл 500 °С) частями автоклава (рис. 6). Перенос вещества осуществляется конвективным перемешиванием. Гидротермальный синтез является основным процессом производства М. кварца.

Методы выращивания М. из газообразного вещества: испарение исходного вещества в вакууме с последующим осаждением пара на кристалл, причём осаждение поддерживается определённым перепадом температуры Т (рис. 7, а); испарение в газе (обычно инертном), перенос кристаллизуемого вещества осуществляется направленным потоком газа (рис. 7, б); осаждение продуктов химических реакций, происходящих на поверхности затравочного М. (рис. 7, в). Метод кристаллизации из газовой фазы широко используется для получения монокристальных плёнок и микрокристаллов для интегральных схем (См. Интегральная схема) и др. целей.

Выбор метода выращивания М. определяется требованием к качеству М. (количество и характер присущих М. дефектов). Различают макроскопические дефекты (инородные включения, блоки, напряжения) и микроскопические (Дислокации, примеси, вакансии (См. Вакансия); см. Дефекты в кристаллах).

Существуют специальные методы уменьшения числа дефектов в М. (отжиг, выращивание М. на бездефектных затравочных кристаллах и др.).

При выращивании М. используются различные способы нагревания: омический, высокочастотный, газопламенный, реже плазменный, электроннолучевой, радиационный (в т. ч. лазерный) и электродуговой.

Лит.: Бакли Г., Рост кристаллов, пер. с англ., М., 1954; Лодиз Р. А., Паркер Р. Л., Рост монокристаллов, пер. с англ., М., 1973; Маллин Дж., Кристаллизация, пер. с англ., М., 1966; Шубников А. В., Образование кристаллов, М. - Л., 1947; его же, Как растут кристаллы, М. - Л., 1935; Пфанн [В. Дж.], Принципы зонной плавки, в кн.: Германий, сб. переводов, М., 1955 (Редкие металлы), с. 92. См. также лит. при ст. Кристаллизация.

Х. С. Багдасаров.

Рис. 1. Схема аппарата для выращивания монокристаллов по методу Стокбаргера: 1 - тигель с расплавом; 2 - кристалл; 3 - печь; 4 - холодильник; 5 - термопара; 6 - диафрагма.

Рис. 2. Схема аппарата для выращивания монокристаллов по методу Чохральского: 1 - тигель с расплавом; 2 - кристалл; 3 - печь; 4 - холодильник; 5 - механизм вытягивания.

Рис. 3. Схема аппарата для выращивания монокристаллов по методу Вернейля: 1 - бункер; 2 - кристалл; 3 - печь; 4 - свеча; 5 - механизм опускания; 6 - механизм встряхивания.

Рис. 4. Схема низкотемпературного кристаллизатора: 1 - раствор; 2 - кристалл; 3 - печь; 4 - термостат; 5 - мешалка; 6 - контактный термометр; 7 - терморегулятор.

Рис. 5. Схема высокотемпературного кристаллизатора: 1 - раствор; 2 - кристалл; 3 - печь; 4 - тигель.

Рис. 6. Схема автоклава для гидротермального синтеза: 1 - раствор; 2 - кристалл; 3 - печь; 4 - вещество для кристаллизации.

Рис. 7. Схема установки для кристаллизации из газовой фазы; пунктиром показано распределение температуры вдоль печи.

монокристалл         
м.
Отдельный кристалл (в отличие от двойников или сростков кристаллов).

Wikipedia

Монокристалл

Монокристалл — отдельный кристалл, имеющий непрерывную кристаллическую решётку (в противоположность поликристаллу — телу из сросшихся кристаллов). Для монокристаллов характерна анизотропия физических свойств. Внешняя форма монокристалла обусловлена его атомно-кристаллической решёткой и условиями (в основном скоростью и однородностью) кристаллизации. Медленно выращенный монокристалл почти всегда приобретает хорошо выраженную естественную огранку, в неравновесных условиях (средняя скорость роста) кристаллизации огранка проявляется слабо. При ещё большей скорости кристаллизации вместо монокристалла образуются однородные поликристаллы и поликристаллические агрегаты, состоящие из множества различно ориентированных мелких монокристаллов. Примерами огранённых природных монокристаллов могут служить монокристаллы кварца, каменной соли, исландского шпата, алмаза, топаза. Большое промышленное значение имеют монокристаллы полупроводниковых и диэлектрических материалов, выращиваемые в специальных условиях. В частности, монокристаллы кремния и искусственных сплавов элементов III (третьей) группы с элементами V (пятой) группы таблицы Менделеева (например, GaAs — арсенид галлия) являются основой современной твердотельной электроники.

Монокристаллы металлов и их сплавов могут обладать повышенными прочностными свойствами и применяются в авиадвигателестроении. Монокристаллы сверхчистых веществ обладают одинаковыми свойствами независимо от способа их получения.

Кристаллизация происходит вблизи температуры плавления (конденсации) из газообразного (например иней и снежинки), жидкого (наиболее часто) и твёрдого аморфного состояний с выделением тепла.

Кристаллизация из газа или жидкости обладает мощным очищающим механизмом: химический состав медленно выращенных монокристаллов практически идеален. Почти все загрязнения остаются (накапливаются) в жидкости или газе. Это происходит потому, что при росте кристаллической решётки происходит самопроизвольный подбор нужных атомов (молекул в случае молекулярных кристаллов) не только по их химическим свойствам (валентности), но и по размеру.

Современной технике уже не хватает небогатого набора свойств естественных кристаллов (особенно для создания полупроводниковых лазеров), и учёные придумали метод создания кристаллоподобных веществ с промежуточными свойствами путём выращивания чередующихся сверхтонких (единицы — десятки нанометров) слоёв кристаллов с похожими параметрами кристаллических решёток.

Beispiele aus Textkorpus für Монокристалл
1. Он превращался в монокристалл и точно повторял структуру подложки кремния.
2. Незнакомые слова "эпитаксия", "монокристалл", "подложки" стали азбукой моей профессии.
3. А входящий в его состав завод "Монокристалл" первым вывел на мировой рынок сверхбольшие пластины из сапфира.
4. При этом чем больше монокристалл, тем он дороже, а себестоимость синтеза ниже.
5. Сегодня "Монокристалл" экспортирует '0 процентов производимой продукции по всему миру, и спрос на нее постоянно растет.
Was ist МОНОКРИСТАЛЛ - Definition